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This is a commentary to an article by Charles H. Bennett, titled “How to Define 
Complexity in Physics And Why” which is found in the anthology From Complexity To 
Life1 . Originally this commentary was meant to be a section in the review of the entire 
anthology in question. I started reviewing various papers in that anthology in the fall of 
2003 but was distracted by other projects. Then Norman Levitt wrote an excellent review 
of the anthology in question thus significantly devaluating the incentive for writing one 
more review of the same anthology. At the time Levitt’s review appeared, I had the 
reviews of three papers in that anthology – those by Bennett, Davies, and Stewart - 
partially prepared.  
 Although I did not completely abandon the idea of finishing this project, it was 
relegated to a low priority shelf. It rested on my disk waiting its turn, whenever its time 
might come. 
 Then something happened that prodded me to pull the half-finished review of 
Bennett’s paper from the disk and take a look at it. The event that caused this renewed 
interest in Bennett’s paper was the recent appearance of a paper by William Dembski (see 
http://www.iscid.org/ubb/ultimatebb.php?ubb=get_topic;f=6;t=000533 and of its critique 
by Cosma Rohilla Shalizi (see http://www.cscs.umich.edu/~crshalizi/weblog/234.html ). 
 As Shalizi has shown, Dembski has demonstrated in his paper an amazing lack of 
familiarity with the literature in the field of which he has been acclaimed an expert. In 
particular, the quantity Dembski introduced in his new article and named Variational 
Information, is in fact a well known for more than 40 years Rènyi divergence of the 
second order.  
 Dembski reaction to Shalizi’s essay was immediate but evasive. In his response, 
Dembski names me several times and takes the liberty of asserting that I, as well as a 
number of other critics (Shallit, Levitt, Wein, Schneider, and Stenger) have no knowledge 
of the sophisticated math he used in his paper and that is why we turned to Shalizi for 
help (as he put it, “Perakh is out and Shalizi is in.”). 
 I can’t speak for Shallit, Levitt, Wein, Schneider, or Stenger.  I am confident, 
though, that at least Shallit, Leviit, and Wein, who are mathematicians, must be better 
versed in the subject matter of Dembski’s paper than I, a physicist rather than a 
mathematician. Nevertheless, even I had no problem of understanding Dembski’s paper, 
and form an opinion of its merits, while the above listed mathematicians were certainly in 
even a better position to judge it.  
 Still, perhaps indeed none of these mathematicians (and even less I) are experts in 
the specific subfield of mathematics to which Dembski’s paper purports to belong. What 
is wrong with that? Likewise, there are areas of knowledge where I or anyone of the 
listed colleagues may be well versed while Dembski lacks any knowledge. The difference 
is, though, that neither I, nor the above listed colleagues pretend to be experts in the fields 
beyond our specialization, and even in the fields of our expertise we never ourselves 
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claim to have suggested revolutionary breakthroughs and, unlike Dembski, are not 
compared by our colleagues to Isaac Newton.  
 It was only naturally that a real expert in the field in question, such as Shalizi, 
undertook the task of dissecting Dembski’s paper, and did it in the most convincing way.  
 Moreover, Dembski has no way to know what the actual level of my or of those 
mathematicians’ knowledge in the field in question is. Therefore his assertion that the 
mathematical apparatus he used in his new paper is well over our heads is not based on 
any factual information but is rather a display of his arrogance.  
 My review of Bennett’s paper has no relation whatsoever to Dembski’s new 
article and to his allegedly innovative approach to information measures.  However, it 
happens to contain references to the works of Rènyi and of other researchers who utilized 
and further developed Rènyi’s ideas.  
 Having encountered the arrogant comments of Dembski according to which I am 
not qualified to judge his great breakthroughs in information theory, I decided to separate 
my old unpublished review of Bennett’s paper from the rest of the planned review of the 
entire anthology by Gregersen and to post it now as a stand-alone piece, and in this way 
to demonstrate that I, not being a mathematician, am perhaps still better versed in the 
literature on information theory than the acclaimed expert Dembski.  
 By no means I claim to be an expert in this field. My knowledge of Rènyi’s 
theories is limited and rather shallow. Until Shalizi has pointed to the fact that Dembski’s 
Variational Information is nothing more than Rènyi divergence of the second order, I 
myself did not realize that.  However, after Shalizi posted his critique, I had no difficulty 
to see the validity of his comments. Dembski’s arrogant remark that I and other critics of 
his work lack qualification to judge his paper does not sound convincing given his own 
insufficient familiarity with the literature in the field where he is supposed to offer 
important new results.   
 Here starts my review of Bennett’s paper.  
 
 Bennnet’s paper is a survey of various definitions of complexity, and specifically 
of their utility for physicists. This is a hot point in modern science and there is a vast 
literature devoted to the elucidation of the concept of complexity. 
 Charles H. Bennett is a Senior Scientist at IBM’s Thomas J. Watson Research 
Center in Yorktown Heights, NY. He is a co-inventor of quantum cryptography and is 
credited with other important contributions to science. While I hold Bennett in a high 
esteem, in my view this particular paper is deficient in some respects. 
 Bennett suggests a classification of possible definitions of complexity. To my 
mind his classification is sometimes based on vague criteria, and incomplete. 
 Strangely, Bennett omits mentioning some of the definitions of complexity which 
have been discussed recently (but prior to the 1999 conference at the Santa Fe institute 
where the articles collected in this anthology were presented).  An example of such an 
omission is “LMC complexity” suggested in 1995 by Lòpez-Ruiz, Mancini, and Calbet.2  
 LMC complexity is one of “statistical complexities” (as distinctive from 
“deterministic” complexities, such as Solomonoff-Kolmogorov-Chaitin complexity, more 
often referred to as simply Kolmogorov complexity).  
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 Perhaps Bennett does not view LMC complexity as a fruitful concept, but, in my 
view, this does not justify ignoring it in an article devoted to the survey of definitions of 
complexity.  
 Here is a brief explanation of LMC complexity. It was suggested as the product of 
two quantities – Shannon’s entropy (which is equivalent to Boltzmann-Gibbs entropy) 
and a quantity named disequilibrium. The latter is a function reflecting in a rather simple 
and transparent way the divergence of a given probability distribution from uniformity 
(see the Appendix to this review).  This product of entropy and disequilibrium vanishes 
in the two extremes – perfect order and perfect disorder, which is a necessary (even if 
perhaps not sufficient) property of a complexity measure.  
 Perhaps Bennett shares the view of some critics of the LMC concept, such as 
Feldman and Crutchfield.3 These authors have shown that LMC complexity is neither an 
intensive nor an extensive quantity in the thermodynamic sense. To remedy this 
“weakness” of LMC complexity, Feldman and Crutchfield suggested a modified LMC 
complexity wherein one of its component – the disequilibrium – is replaced by the 
“relative information” also known as Kullback-Leibler divergence (or as Rènyi 
divergence of the first order – see, for example 4).  This substitution converts LMC 
complexity into an extensive quantity (in the sense that it increases linearly with the 
system’s size). However, as Feldman and Crutchfield conclude, the modified LMC 
complexity is in fact a trivial function of entropy density and as such is of a limited use as 
a measure of structure or memory.  
 Since Bennett did not mention either LMC complexity or its critique by Feldman 
and Crutchfield, the reader is left in dark as regards Bennett’s view on that matter and the 
place of the concept in question among other definitions of complexity. 
 Here is my two pence regarding LMC complexity and its critique. To my mind,  
LMC complexity has its legitimate place as one of the statistical definitions of 
complexity, despite its shortcomings. Feldman and Crutchfield’s analysis is well taken 
and, indeed, LMC complexity is not a linear function of the system’s size, as the 
conventionally defined extensive quantities usually are. However, it is not at all clear to 
me that this is such a serious shortcoming.  LMC complexity is still increasing with the 
system’s size (which testifies to its being not an intensive quantity), albeit not linearly. 
Perhaps, it can be construed as a quantity extensive in a more convoluted manner than the 
more conventional extensive quantities such as, for example, mass.   
 Furthermore, perhaps LMC complexity can indeed be gainfully modified in the 
spirit of Feldman and Crutchfield’s amendment without making it a trivial function of 
entropy density. One way to do so is possibly using instead of Kullback-Leibler 
divergence, which is just the first-order Rènyi divergence, Rènyi divergence(s) of higher 
order (perhaps the second order version is a suitable candidate). In doing so, we may 
expect to lose again the linear dependence of the measure in question on the system’s 
size, but some of LMC-like complexities using higher order Rènyi divergences instead of 
either disequilibrium or Kullback-Leibler divergence may open interesting new ways of 
estimating complexity. 
 Another shortcoming of LMC complexity, in Feldman et al.’s view is that it is 
“over-universal”. This term means that this quantity, while reflecting the system’s 
“disorder,” may have the same value for structurally different system. Feldman et al. 
think that such property of the quantity which is supposedly measuring complexity is a 
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serious weakness. In my view, while Feldman et al.’s objection, again, is well taken, the 
ultimate conclusion regarding the utility of LMC complexity can be made only after it 
has been applied to specific problems and its behavior in various practically relevant 
situations has been observed.  
 I think it is possible that LMC complexity, despite its imperfection, can 
presumably have some gainful use, especially given the fact that there is no perfect 
definition of complexity and no universal concept of complexity applicable to all 
situations. LMC complexity has an advantage of being a simple concept amenable to easy 
interpretation and use in various problems. Indeed, there are a number of published 
papers wherein applications of LMC complexity are demonstrated and some of them look 
promising. 5  
 I am not a champion of LMC complexity which may or may not become a useful 
even if only limited tool in the complexity theory – the champion’s role legitimately 
belongs to the originators of that concept. My point here is not so much a defense of  
LMC complexity, as rather giving an example of Bennett’s omitting discussions of some 
of the complexity measures suggested in literature. 
 Another definition of complexity absent from Bennett’s paper is that by Shiner, 
Davison, and Landsberg.6 These authors approached their task in a way similar to that by 
Lòpez-Ruiz et al., but suggested a different mathematical expression for statistical 
complexity. It is a quadratic function containing a quantity they call “disorder” (see the 
Appendix).  Crutchfield, Feldman, and Shalizi criticized Shiner et al.’s definition7 as 
being, similarly to LMC complexity, “over-universal.” (Bennett could not know of 
Crutchfield et al.’s critique which appeared after the conference at the Santa Fe institute.  
He possibly could have known of Shiner et al.’s paper which appeared in 1999.) 
 One more concept of complexity which Bennett did not mention, is that suggested 
by W. Dembski (despite Dembski’s being one of the participants in the Santa Fe institute 
conference and a contributor to the anthology under discussion). Unlike LMC 
complexity, which may or may not be very useful but which entails certain reasonable 
notions, Dembski’s complexity is, in my opinion, a concept making little sense. In fact, in 
different parts of his publications, Dembski uses the term complexity in different ways 
often incompatible with each other. 8,9    
 Bennett endeavors to find a definition of complexity that would work in physics. 
Before embarking on that discourse, Bennett formulates his goal, which is to find  
definitions of complexity “that on the one hand adequately capture intuitive notions of 
complexity and on the other hand are sufficiently objective and mathematical to prove 
theorems about.” This certainly is a very interesting and worthy endeavor which, if 
successful, would enable important theoretical and practical applications. Bennett’s 
preferred approach to the definitions in question is to favor the notion of “logical depth,” 
of which he, I believe, was the originator. To explicate this notion, Bennett refers to his 
other publications. Since I am discussing here only the collection From Complexity to 
Life, I will not comment on Bennett’s other publications.  
 A reader not familiar with Bennett’s other publications will remain uncertain in 
regard to the meaning of logical depth and its relation to the notion of complexity. (The 
logical depth of, for example, a system’s configuration, is the time required for a 
universal Turing machine to run the minimal program that reproduces it. Obviously, this 
concept requires a more detailed elucidation for non-experts, but Bennett unfortunately 
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does not provide such, so his discussion of logical depth will leave many readers as much 
in dark in that respect as before reading his paper.)  
 Before going into details of his concepts of complexity, Bennett observes, “Life-
like properties (e.g., growth, reproduction, adaptation) are very hard to define rigorously, 
and are too dependent on function, as opposed to structure.” This observation seems 
almost self-evident, but to my mind it is unclear why it should exclude a definition of 
complexity based on structure.  Bennett’s example – “a dead human body is still 
complex, though it is functionally inert” seems to jibe with the idea that complexity can 
be fruitfully defined by accounting only for the properties of the structure and divorced 
from the consideration of function. Functionality and complexity are two different 
concepts and in my view there is no need to make functionality interfere with the 
definition of complexity. As long as our goal is limited only to finding a workable 
definition of complexity, the discussion of the relation between complexity and 
functionality is better to be postponed until the next step of discourse. The high 
complexity of living organisms may be analyzed as a separate phenomenon, and its 
relation to functionality can be discussed on a subsequent step apart from the definition of 
complexity.  
 Bennett proceeds by pointing out that thermodynamic potentials (he lists only 
two, entropy and generic free energy) are unsuitable as measures of complexity. To me 
this statement looks self-evident and I can’t recall the thermodynamic potentials 
(including all those not listed by Bennett) ever suggested as measures of complexity 
(except, perhaps, some forms of entropy2 which, however have not been really suggested 
as profitable measures of complexity in a serious way). From the above trivial 
observation Bennett derives a supposedly new law labeled the “slow growth law.” The 
essence of that putative law is that “complexity ought not to increase quickly, except with 
low probability, but can increase slowly, for example, over geological time.”  
 Unfortunately, besides the vagueness of the suggested law which contains no 
indications what the terms “quickly” and “slow” mean quantitatively, Bennett provides 
no arguments supporting the validity of the new law. His supporting notions boil down to 
a couple of examples which can have various interpretations.  
 One of his examples is about phase transformation – a rapid “crystallization of a 
supersaturated solution following introduction of a seed crystal.”  This process is well 
understood and explained, for example, in thermodynamics. In this process, the first and 
the second laws of thermodynamics are sufficient to account for the process’s features 
(although its details may be better elucidated using thermodynamic potentials, and even 
more features can be revealed by applying physical kinetics). Bennett compares this 
process with “rapid growth of bacteria following introduction of a seed bacterium” into a 
sterile nutrient solution. In Bennett’s view, the growth of bacteria is a process which is 
not a manifestation of the second law of thermodynamics, but rather of a new law of 
“slow growth.” To my mind, all this discourse is obscure and somehow lacking a 
sufficient logical or empirical substantiation. I don’t think any scientist would ever 
maintain that the growth of bacteria is the same process as the crystallization of a 
supersaturated solution, so Bennett seems to state the obvious. However, how the 
difference between the crystallization of a supersaturated solution and the growth of 
bacteria leads to a putative “law of slow growth” is, in my opinion, not really explained. 
If there is a logical connection here, Bennett should have explained it instead of simply 
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claiming such a connection. As the matter stands now, the real judgment on the suggested 
new law has, in my view, to wait until Bennett provides lucid arguments in favor of that 
law.   
 Bennett continues by discussing such variants of complexity as computational 
universality, computational time/space complexity and algorithmic information. I will 
leave without comments the first two items as I have no objections to Bennett’s 
discussion in these two sections, but I’ll briefly comment on the third. Bennett writes, 
“…algorithmic entropy corresponds intuitively to randomness rather than to complexity.”  
This sounds mysterious because algorithmic complexity (often referred to as Kolmogorov 
complexity9 ), within the framework of Kolmogorov-Chaitin’s theory is to all intents and 
purposes tantamount to randomness: the more random a string the larger its Kolmogorov 
complexity which, as Bennett correctly states, is the size of the shortest program 
generating the string in question.  While algorithmic theory by Kolmogorov –Chaitin is 
not perfect (for example, because it is impossible to assert randomness of a finite string, 
or because the shortest program can only be defined allowing for a certain fudge factor) it 
nevertheless is theoretically powerful in the domain of its applicability, even if not 
always useful practically. Bennett concludes this section with a correct observation that 
“…complex genome or literary text is intermediate in algorithmic entropy between a 
random sequence and a prefectly (sic) orderly one.” He seems to view this as a drawback 
of the concept of algorithmic entropy. To my mind, it is not really a drawback. I 
discussed a similar notion in detail (see for example10).  
 This assertion does though work against a sometimes suggested notion that 
informational entropy is a negative of information. I believe such a notion is misleading 
(a more detailed discussion of this point will be offered in an essay, which is in 
preparation, about the paper by Ian Stewart11 in the same anthology).   
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APPENDIX 
 
 
The term “LMC complexity” was composed by its authors from the initials of their  
surnames: Lòpez-Ruiz, Mancini, and Calbet . The formula given by these authors is: 
 
                                              C= H × D, 
 
where C is complexity, H is Shannon entropy (which is an equivalent of Boltzman-
Gibbs’s entropy) and D is called disequilibrium. This quantity is a measure of the 
divergence of the given probability distribution from the uniform one. 
 

                                  H=
1

log
N

i i
i

K p p
=
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                                  D= 2

1

1( )
N

i
i

p
N=
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Here pi is probability whose (finite) distribution runs over N values, and K is a constant 
depending on the choice of units (essentially entropy is a dimensionless quantity, so 
taking K=1 does not impair the general behavior of that quantity).  
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For the case of perfect order H vanishes, and for the case of complete disorder D 
vanishes, hence C vanishes in both extremes which is a necessary (albeit perhaps not a 
sufficient) requirement for a complexity measure. 
 
Feldman and Crutchfield’s amendment replaces D with the Kullback-Leibler divergence 
(which is the first order Rènyi divergence) which these authors also denote D. To avoid 
confusion, here it will be denoted DR1 where the subscript R1 refers to it being the first 
order Rènyi divergence.  
 

                          DR1 = 
1

log
N

i
i

i i

pp
q=

∑  

 
where pi and qi are probabilities belonging to two different distributions; DR1 “measures” 
the divergence between these two distributions.  For the purpose of serving as a 
component of complexity, one of the compared distributions is taken to be uniform, 
which leads to  
                       

                                      
1

log
N

FC i i
i

D p
=

= ∑ Np

 
where the subscript FC refers to Feldman and Crutchfield.  
 
If, instead of Kullback-Leibler divergence, a higher order Rènyi divergence were to be 
used, the expression for DR1 or DFC would be replaced with 
 

                                   DRα= 1

1

1 log( )
1

N

i i
i

p qα α

α
−

=− ∑  

 
where α is the order of Rènyi divergence. In the limit of α approaching 1 it converts into 
Kullback – Leibler divergence shown above. 
 
The above equations can be generalized for continuous distributions (where the sums are 
replaced with appropriate integrals).  
 
Shiner-Davison-Landsberg (SDL) complexity is expressed as:  
 
                                (1 )α β

αβΓ = ∆ −∆  
 
where ∆ is called “disorder” and is defined as  
 
                                                     ∆ = S/Smax
 
S is the Boltzmann-Gibbs-Shannon entropy of the system and Smax is the maximum 
possible entropy (corresponding to the random distribution). If both α>1 and β>1, the 
SDL complexity vanishes for both extremes – perfect order and perfect randomness, thus 
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satisfying the requirement for a complexity measure (which, though, may be not 
necessarily sufficient).  


